“Bayesian algorithm implementation in a real time calculating risk assessment model on benzene”

نویسندگان

  • Dimosthenis A. Sarigiannis
  • Spyros P. Karakitsios
  • Alberto Gotti
  • Costas L. Papaloukas
  • Pavlos A. Kassomenos
  • Georgios A. Pilidis
چکیده

The objective of the current study was the composition of a reliable modeling platform in order to calculate in real time the estimated health risk for filling station employees evaluating the current environmental parameters (traffic, meteorological and amount of fuel traded) determined by the proper sensors. A set of Artificial Neural Networks (ANNs) was developed to predict benzene exposure pattern for the filling station employees. Furthermore, a Physiology Based Pharmaco-Kinetic (PBPK) risk assessment model was developed in order to calculate the lifetime probability distribution of leukemia to the employees, fed by data obtained by the ANN model. Bayesian algorithm was involved in crucial points of both model sub compartments. The application was evaluated in two filling stations (one urban and one rural). Among several algorithms implied for the development of the ANN exposure model, the Bayesian regularization provided the best results and in conclusion seemed to be a promising technique in the prediction of the exposure pattern of that occupational population group. On assessing the estimated leukemia risk under the scope of providing a distribution curve based on the exposure levels and the different susceptibility of the population, Bayesian algorithm was a completely necessary part of the Monte Carlo approach which is integrated in the PBPK model. Conclusively, the overall above modeling systems seems capable in exploiting the information gathered by the environmental sensors in order to calculate in real time the estimated risk of leukemia for the employees of the filling station.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Algorithm Implementation in a Real Time Exposure Assessment Model on Benzene with Calculation of Associated Cancer Risks

The objective of the current study was the development of a reliable modeling platform to calculate in real time the personal exposure and the associated health risk for filling station employees evaluating current environmental parameters (traffic, meteorological and amount of fuel traded) determined by the appropriate sensor network. A set of Artificial Neural Networks (ANNs) was developed to...

متن کامل

Project Portfolio Risk Response Selection Using Bayesian Belief Networks

Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...

متن کامل

Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks

Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...

متن کامل

Design and Implementation of a Kalman Filter-Based Time-Varying Harmonics Analyzer

Nowadays with increasing use of numerous nonlinear loads, voltage and current harmonics in power systems are one of the most important problems power engineers encounter. Many of these nonlinear loads, because of their dynamic natures, inject time-varying harmonics into power system. Common techniques applied for harmonics measurement and assessment such as FFT have significant errors in presen...

متن کامل

Developing an Integrated Simulation Model of Bayesian-networks to Estimate the Completion Cost of a Project under Risk: Case Study on Phase 13 of South Pars Gas Field Development Projects

Objective: The aim of this paper is to propose a new approach to assess the aggregated impact of risks on the completion cost of a construction project. Such an aggregated impact includes the main impacts of risks as well as the impacts of interactions caused by dependencies among them. Methods: In this study, Monte Carlo simulation and Bayesian Networks methods are combined to present a frame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008